A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. | LitMetric

Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array.

Anal Chem

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.

Published: September 2011

Stochasticity in gene expression, protein or metabolite levels contributes to cell-cell variations, the analysis of which could lead to a better understanding of cellular processes and drug responses. Current technologies are limited in their throughput, resolution (in space, time, and tracking individual cells instead of population average) and the ability to control cellular environment. A few microfluidic tools have been developed to trap and image cells; however, in most designs available to date, there is a compromise among loading efficiency, speed, the ability to trap single cells, and density or number of trapped cells. To meet the needs of single-cell imaging studies, we developed a microfluidic platform for high-throughput capture and imaging of thousands of single cells. The optimized trapping mechanism enables 95% of the traps to be occupied with single cells, with a trap density of 860 traps/mm(2). The dense array allows up to 800 cells to be imaged simultaneously with a 4x objective and a typical camera setup. Capture occurs with low shear and 94% viability after 24 h. This platform is compatible with other upstream microfluidic components for complex cell stimulation patterns, and we show here the ability to measure heterogeneity in calcium oscillatory behavior in genetically identical cells and monitor kinetic cellular response to chemical stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190639PMC
http://dx.doi.org/10.1021/ac2011153DOI Listing

Publication Analysis

Top Keywords

single cells
12
cells
8
imaging single-cell
4
single-cell signaling
4
signaling dynamics
4
dynamics deterministic
4
deterministic high-density
4
high-density single-cell
4
trap
4
single-cell trap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!