Interleukin-1α, -6, and -8 decrease Cdc42 activity resulting in loss of articular chondrocyte phenotype.

J Orthop Res

Department of Clinical Sciences, VMC, Cornell University, C3-181, Ithaca, New York 14853, USA.

Published: February 2012

Small GTPase proteins mediate changes in cellular morphology and other cellular functions. The aim of this study was to examine signaling of the small GTPase Cdc42 by stimulating chondrocytes grown in monolayer with long- (96 h) or short- (2 and 30 min) term exposure to interleukin-1α (IL-1α), IL-6, or IL-8. Quantitative PCR was used to determine changes in collagen type IIB (COL2A1), aggrecan (AGG), and matrix metalloproteinase-13 (MMP-13) gene expression after prolonged cytokine exposure. Effects of short-term treatment with IL-α, IL-6, or IL-8 on endogenous GTP-bound Cdc42 levels were assessed using an affinity assay, and on actin filament organization using confocal microscopy. Cytokine treatments significantly decreased COL2A1 and AGG expression and increased MMP-13 expression. Short exposure to IL-1α, IL-6, or IL-8 decreased endogenous GTP-Cdc42 and increased stress fibers, which were reversed with cytochalasin D treatment. These results show that IL-mediated Cdc42 signaling modifies chondrocyte phenotype and morphology. This may lend insight into the altered chondrocyte phenotype in catabolic conditions such as osteoarthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.21515DOI Listing

Publication Analysis

Top Keywords

chondrocyte phenotype
12
il-6 il-8
12
small gtpase
8
il-1α il-6
8
interleukin-1α decrease
4
cdc42
4
decrease cdc42
4
cdc42 activity
4
activity loss
4
loss articular
4

Similar Publications

Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.

View Article and Find Full Text PDF

Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!