Small GTPase proteins mediate changes in cellular morphology and other cellular functions. The aim of this study was to examine signaling of the small GTPase Cdc42 by stimulating chondrocytes grown in monolayer with long- (96 h) or short- (2 and 30 min) term exposure to interleukin-1α (IL-1α), IL-6, or IL-8. Quantitative PCR was used to determine changes in collagen type IIB (COL2A1), aggrecan (AGG), and matrix metalloproteinase-13 (MMP-13) gene expression after prolonged cytokine exposure. Effects of short-term treatment with IL-α, IL-6, or IL-8 on endogenous GTP-bound Cdc42 levels were assessed using an affinity assay, and on actin filament organization using confocal microscopy. Cytokine treatments significantly decreased COL2A1 and AGG expression and increased MMP-13 expression. Short exposure to IL-1α, IL-6, or IL-8 decreased endogenous GTP-Cdc42 and increased stress fibers, which were reversed with cytochalasin D treatment. These results show that IL-mediated Cdc42 signaling modifies chondrocyte phenotype and morphology. This may lend insight into the altered chondrocyte phenotype in catabolic conditions such as osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.21515 | DOI Listing |
Nat Metab
January 2025
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates.
View Article and Find Full Text PDFChondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!