In this study, the feasibility of the direct contact membrane distillation (DCMD) process to recover arsenic, uranium and fluoride contaminated saline ground waters was investigated. Two types of membranes (polypropylene, PP; and polytetrafluoroethylene, PTFE) were tested to compare the permeate production rates and contaminant removal efficiencies. Several experiments were conducted to study the effect of salts, arsenic, fluoride and uranium concentrations (synthetic brackish water with salts: 1000-10,000 ppm; arsenic and uranium: 10-400 ppb; fluoride: 1-30 ppm) on the desalination efficiency. The effect of process variables such as feed flow rate, feed temperature and pore size was studied. The experimental results proved that the DCMD process is able to achieve over 99% rejection of the salts, arsenic, fluoride and uranium contaminants and produced a high quality permeate suitable for many beneficial uses. The ability to utilize the low grade heat sources makes the DCMD process a viable option to recover potable water from a variety of impaired ground waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2011.06.056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!