Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 gl(-1) agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2011.06.008 | DOI Listing |
Pediatr Blood Cancer
December 2024
Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Background: Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRAS) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy.
View Article and Find Full Text PDFBiol Methods Protoc
December 2024
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia.
In this protocol for obtaining doubled haploids plants (DH), we propose a new method for microspore isolation. This method is useful for genotypes of the Brassicaceae family with low responsiveness to DH technology. For such crops, it allows increasing the embryo yield several times and sometimes obtaining embryos for the first time.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
Background: Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China. Electronic address:
The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agriculture, Yunnan University, Kunming 650500, China.
() genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of , hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed genes in three species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!