The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor. The adult, as well as developing brain, possess a remarkable ability to show reversible structural and functional plasticity in response to stressful and other experiences, including neuronal replacement, dendritic remodeling, and synapse turnover. This is particularly evident in the hippocampus, where all three types of structural plasticity have been recognized and investigated, using a combination of morphological, molecular, pharmacological, electrophysiological and behavioral approaches. The amygdala and the prefrontal cortex, brain regions involved in anxiety and fear, mood, cognitive function and behavioral control, also show structural plasticity. Acute and chronic stress cause an imbalance of neural circuitry subserving cognition, decision making, anxiety and mood that can increase or decrease expression of those behaviors and behavioral states. In the short term, such as for increased fearful vigilance and anxiety in a threatening environment, these changes may be adaptive; but, if the danger passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation may need intervention with a combination of pharmacological and behavioral therapies, as is the case for chronic or mood anxiety disorders. We shall review cellular and molecular mechanisms, as well as recent work on individual differences in anxiety-like behavior and also developmental influences that bias how the brain responds to stressors. Finally, we suggest that such an approach needs to be extended to other brain areas that are also involved in anxiety and mood. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196296 | PMC |
http://dx.doi.org/10.1016/j.neuropharm.2011.07.014 | DOI Listing |
ACS Nano
January 2025
Department of Urology, Peking University First Hospital, Beijing 100034, China.
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
USDA ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, Oregon, United States, 97330;
Members of the genus are responsible for many important diseases in agricultural and natural ecosystems. causes devastating diseases of oak, and tanoak stands in US forests and larch in the UK. The four evolutionary lineages involved express different virulence phenotypes on plant hosts, and characterization of gene content is foundational to understanding the basis for these differences.
View Article and Find Full Text PDFLanguage is a sophisticated cognitive skill that relies on the coordinated activity of cerebral cortex. Acquiring a second language creates intricate modifications in brain connectivity. Although considerable studies have evaluated the impact of second language acquisition on brain networks in adulthood, the results regarding the ultimate form of adaptive plasticity remain inconsistent within the adult population.
View Article and Find Full Text PDFIncreasing variability down serially segmented structures, such as mammalian molar teeth and vertebrate limb segments, is a much-replicated pattern. The same phenotypic pattern has conflicting interpretations at different evolutionary scales. Macroevolutionary patterns are thought to reflect greater evolutionary potential in later-forming segments, but microevolutionary patterns are thought to reflect less evolutionary potential and greater phenotypic plasticity.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!