Evolutionary variation of papillomavirus E2 protein and E2 binding sites.

Virol J

Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.

Published: August 2011

Background: In an effort to identify the evolutionary changes relevant to E2 function, within and between papillomavirus genera, we evaluated the E2 binding sites (E2BS)s inside the long-control-region (LCR), and throughout the genomes. We identified E2BSs in the six largest genera of papillomaviruses: Alpha, Beta, Gamma, Delta, Lambda, and Xi-papillomaviruses (128 genomes), by comparing the sequences with a model consensus we created from known functional E2BSs (HPV16, HPV18, BPV1). We analyzed the sequence conservation and nucleotide content of the 4-nucleotide spacer within E2BSs. We determined that there is a statistically significant difference in GC content of the four-nucleotide E2BS spacer, between Alpha and Delta-papillomaviruses, as compared to each of the other groups. Additionally, we performed multiple alignments of E2 protein sequences using members of each genus in order to identify evolutionary changes within the E2 protein.

Results: When a phylogenetic tree was generated from E2 amino acid sequences, it was discovered that the alpha-papillomavirus genera segregates into two distinct subgroups (α1 and α2). When these subgroups were individually analyzed, it was determined that the subgroup α1 consensus E2BS favored a spacer of AAAA, whereas subgroup α2 favored the opposite orientation of the same spacer; TTTT. This observation suggests that these conserved inverted linkers could have functional importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161962PMC
http://dx.doi.org/10.1186/1743-422X-8-379DOI Listing

Publication Analysis

Top Keywords

binding sites
8
identify evolutionary
8
evolutionary changes
8
evolutionary variation
4
variation papillomavirus
4
papillomavirus protein
4
protein binding
4
sites background
4
background effort
4
effort identify
4

Similar Publications

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.

View Article and Find Full Text PDF

The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.

View Article and Find Full Text PDF

TPepRet: a deep learning model for characterizing T cell receptors-antigen binding patterns.

Bioinformatics

January 2025

School of Computer Science and engineering, Central South University, Changsha, 410083, China.

Motivation: T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!