mTORC2 targets AGC kinases through Sin1-dependent recruitment.

Biochem J

Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.

Published: October 2011

The protein kinase TOR (target of rapamycin) is a key regulator of cell growth and metabolism with significant clinical relevance. In mammals, TOR signals through two distinct multi-protein complexes, mTORC1 and mTORC2 (mammalian TOR complex 1 and 2 respectively), the subunits of which appear to define the operational pathways. Rapamycin selectively targets mTORC1 function, and the emergence of specific ATP-competitive kinase inhibitors has enabled assessment of dual mTORC1 and mTORC2 blockade. Little is known, however, of the molecular action of mTORC2 components or the relative importance of targeting this pathway. In the present study, we have identified the mTORC2 subunit Sin1 as a direct binding partner of the PKC (protein kinase C) ε kinase domain and map the interaction to the central highly conserved region of Sin1. Exploiting the conformational dependence for PKC phosphorylation, we demonstrate that mTORC2 is essential for acute priming of PKC. Inducible expression of Sin1 mutants, lacking the PKC-interaction domain, displaces endogenous Sin1 from mTORC2 and disrupts PKC phosphorylation. PKB (protein kinase B)/Akt phosphorylation is also suppressed by these Sin1 mutants, but not the mTORC1 substrate p70(S6K) (S6 kinase), providing evidence that Sin1 serves as a selectivity adaptor for the recruitment of mTORC2 targets. This inducible selective mTORC2 intervention is used to demonstrate a key role for mTORC2 in cell proliferation in three-dimensional culture.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20110678DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
mtorc2
10
mtorc2 targets
8
mtorc1 mtorc2
8
pkc phosphorylation
8
sin1 mutants
8
kinase
6
sin1
6
targets agc
4
agc kinases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!