Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography.

J Biomed Opt

The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

Published: July 2011

Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.3598842DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
12
optical coherence
12
coherence tomography
12
skeletal muscle
12
mdx mouse
8
mouse model
8
duchenne muscular
8
three-dimensional optical
8
muscle tissue
8
muscle
5

Similar Publications

Background And Purpose: Pathogenic variants in the RYR1 gene have been associated with a variety of conditions, ranging from congenital myopathy to adult manifestations. Our aim was to characterize the p.Leu2286Val variant in 17 Basque patients, to accurately determine its correlation with clinical features and to explore the possible founder effect of the variant.

View Article and Find Full Text PDF

Enhancing Mobility: Surgical Deformity Correction and Rehabilitation in Emery-Dreifuss Muscular Dystrophy Type 2.

Cureus

November 2024

Physical Medicine and Rehabilitation, St. John's National Academy of Health Sciences, Bengaluru, IND.

Emery-Dreifuss Muscular Dystrophy (EDMD) is a rare genetic disorder characterized by muscle weakness, joint contractures, and cardiac dysfunction. Within this spectrum, EDMD Type 2, attributed to a heterozygous missense variant in exon 9 of the LMNA gene, presents a distinctive clinical profile. This case report details the presentation and management of a teenage girl displaying neck, trunk, upper and lower limb weakness, Achilles tendon contracture, and lordosis.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!