Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3611007 | DOI Listing |
JTO Clin Res Rep
December 2024
Mayo Clinic, Rochester, Minnesota.
Introduction: The spatially complex nature of mesothelioma and interventions like pleurodesis, surgery, and radiation often complicate imaging-based assessment. Further, cell-free DNA (cfDNA) based monitoring strategies are inadequate for mesothelioma, given the presence of a few recurring nonsynonymous somatic variants. However, patient-specific chromosomal rearrangements are commonly found in mesothelioma.
View Article and Find Full Text PDFMed J Armed Forces India
December 2024
Professor (Lab Sciences & Molecular Medicine), Army Hospital (R&R), Delhi Cantt, India.
Background: Plasma cell myeloma (PCM) is a common adult hematological neoplasm of terminally differentiated B-cells resulting in accumulation of monoclonal plasma cells. PCM is heterogeneous disease with survival time varies from months to years, determined by age, stage, cytogenetics abnormalities, and treatment response. There is conflicting evidence in role of immunophenotype as a prognostic indicator.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Plasmaphysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany.
A new high energy proton radiography facility PRIOR-II (Proton Microscope for FAIR) has been designed, constructed, and successfully commissioned at the GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany) pushing the technical boundaries of charged particle radiography with normal conducting magnets to the limits. The setup is foreseen to become a new and powerful user facility for carrying out fundamental science experiments in the fields of plasma and shock wave physics, material science, and medical physics. It will help address several unsolved scientific challenges, which require high-speed and precise non-invasive diagnostic methods capable of probing matter with up to 100 g/cm2 areal density.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France.
Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics is controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!