The effects of patch-potentials on the gravity probe B gyroscopes.

Rev Sci Instrum

W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305-4085, USA.

Published: July 2011

Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3608615DOI Listing

Publication Analysis

Top Keywords

gravity probe
8
designed measure
8
disturbance effects
8
polhode damping
8
patch potentials
8
spherical harmonics
8
effects
4
effects patch-potentials
4
patch-potentials gravity
4
gyroscopes
4

Similar Publications

Primordial black holes and their gravitational-wave signatures.

Living Rev Relativ

January 2025

Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.

In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.

View Article and Find Full Text PDF

Determination of Cenozoic Sedimentary Structures Using Integrated Geophysical Surveys: A Case Study in the Hebei Plain, China.

Sensors (Basel)

January 2025

Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Dongli, Tianjin 300300, China.

The strong multi-stage tectonic movement caused the northwest of the North China Plain to rise and the southeast to fall. The covering layer in the plain area was several kilometers thick. In addition to expensive drilling, it is difficult to obtain deep geological information through traditional geological exploration.

View Article and Find Full Text PDF

This study aimed to identify an efficient and sustainable extraction method for phenolic compounds and flavonoids from I. laurina using maceration (conventional), ultrasonic bath and probes, cup horn sonication, and microwave. It evaluated extraction parameters and assessed total phenolic compounds, flavonoids, antioxidant, and antimicrobial capacities, with annotated compounds via ESI-ToF-MS and the green analytical procedure index analysis.

View Article and Find Full Text PDF

Bathymetry critically influences the intrusion of warm Circumpolar Deep Water onto the continental shelf and under ice shelf cavities in Antarctica, thereby forcing ice melting, grounding line retreat, and sea level rise. We present a novel and comprehensive bathymetry of Antarctica that includes all ice shelf cavities and previously unmeasured continental shelf areas. The new bathymetry is based on a 3D inversion of a circumpolar compilation of gravity anomalies constrained by measurements from the International Bathymetric Chart of the Southern Ocean, BedMachine Antarctica, and discrete seafloor measurements from seismic and ocean robotic probes.

View Article and Find Full Text PDF
Article Synopsis
  • Capacitive sensors are essential for superconducting gravimeters due to their precision and minimal drift, prompting the development of a cryogenic front-end circuit to address parasitic capacitance issues.
  • The new circuit includes a noiseless superconducting transformer and a low-noise cryogenic preamplifier, significantly boosting the transfer coefficient and reducing displacement noise compared to circuits operating at room temperature.
  • Testing of the cryogenic front-end circuit with a superconducting gravimeter showed that the gravity data aligned well with theoretical models, indicating its effectiveness and stability over time.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!