We report tunneling spectroscopy experiments on a bilayer graphene double quantum dot device that can be tuned by all-graphene lateral gates. The diameter of the two quantum dots are around 50 nm and the constrictions acting as tunneling barriers are 30 nm in width. The double quantum dot features additional energies on the order of 20 meV. Charge stability diagrams allow us to study the tunable interdot coupling energy as well as the spectrum of the electronic excited states on a number of individual triple points over a large energy range. The obtained constant level spacing of 1.75 meV over a wide energy range is in good agreement with the expected single-particle energy spacing in bilayer graphene quantum dots. Finally, we investigate the evolution of the electronic excited states in a parallel magnetic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl201295s | DOI Listing |
Vision Res
January 2025
Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia. Electronic address:
Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.
The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
We report the results of a study of the interaction between torsion and the low frequency out-of-plane silyl wag vibration in the ground, S, and excited, S, electronic states of phenylsilane. These studies follow the observation of interactions between methyl torsion and the out-of-plane methyl wagging vibration in toluene, several fluoro-substituted toluenes and -methylpyrrole. The interaction leads to various spectroscopic constants becoming divorced from their usual physical meaning.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.
Hybrid quantum-classical computing algorithms offer significant potential for accelerating the calculation of the electronic structure of strongly correlated molecules. In this work, we present the first quantum simulation of conical intersections (CIs) in a biomolecule, cytosine, using a superconducting quantum computer. We apply the contracted quantum eigensolver (CQE)─with comparisons to conventional variational quantum deflation (VQD)─to compute the near-degenerate ground and excited states associated with the conical intersection, a key feature governing the photostability of DNA and RNA.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!