Rice seed size is an important agronomic trait in determining the yield potential, and four seed size related genes (GS3, GW2, qSW5/GW5 and GIF1) have been cloned in rice so far. However, the relationship among these four genes is still unclear, which will impede the process of gene pyramiding breeding program to some extent. To shade light on the relationship of above four genes, gene expression analysis was performed with GS3-RNAi, GW2-RNAi lines and CSSL of qSW5 at the transcriptional level. The results clearly showed that qSW5 and GW2 positively regulate the expression of GS3. Meanwhile, qSW5 can be down-regulated by repression of GW2 transcription. Additionally, GIF1 expression was found to be positively regulated by qSW5 but negatively by GW2 and GS3. Moreover, the allelic effects of qSW5 and GS3 were detailedly characterized based on a natural population consisting of 180 rice cultivars. It was indicated that mutual interactions exist between the two genes, in which, qSW5 affecting seed length is masked by GS3 alleles, and GS3 affecting seed width is masked by qSW5 alleles. These findings provide more insights into the molecular mechanisms underlying seed size development in rice and are likely to be useful for improving rice grain yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-011-1657-x | DOI Listing |
Resource competition among flowers is expected to influence variation in seed output within inflorescences, but the extent to which flower position affects competitive interactions is still incompletely understood. To investigate position effects on seed output in the perennial, monoecious macrophyte Sagittaria trifolia, we compared components of seed production (fruit set, seed number per fruit, and seed size) in control inflorescences to that in inflorescences from which half of the female flowers were experimentally removed, either from basal positions, from upper positions, or from across the inflorescence. Basal and upper flower removal reduced total seed output per inflorescence, while the throughout removal treatment maintained a seed yield comparable to the control.
View Article and Find Full Text PDFNanoscale
March 2025
Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The combination of different metals into a discrete colloidal nanocrystal (NC) lattice to form solid solutions can result in synergetic and non-additive effects, leading to physicochemical properties distinct from those observed in monometallic NCs. However, these features are influenced by parameters that are challenging to control simultaneously using conventional synthesis methods, including composition, morphology, size, and elemental distribution. In this study, we present a methodology that exploits seed-mediated growth routes and pulsed laser-induced ultrafast heating to synthesize bimetallic and trimetallic colloidal alloy NCs with tailored compositions, well-defined spherical morphologies, and precise control over the number of atoms per NC lattice.
View Article and Find Full Text PDFEnviron Technol
March 2025
Nuclear Materials Authority, Cairo, Egypt.
The most secure method for the ecosystem is the chemical disposal of radioactive waste through adsorption, as uranium is a radioactive and hazardous environmental material that requires safe disposal. Herein, a new, highly efficient, cheap sorbent to remove it. A functionalized environmental-friendly biosorbent (moringa seed waste) was synthesized via a wet processing technique.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
March 2025
University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg, Canada.
Our previous study revealed a significant anti-atherosclerotic effect of Kgengwe seed powder (KSP) in low-density lipoprotein receptor knockout (LDL-r-KO) mice. The importance of various lipid and protein metabolites, including certain amino acids and fatty acids on atherogenesis has been well established. Thus, we used plasma and fecal samples from our previous study to further study the association of such metabolites with atherosclerotic lesion development.
View Article and Find Full Text PDFPlant Sci
March 2025
Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy. Electronic address:
High-amylose wheat has garnered significant attention from the food industry for its potential to produce low-glycaemic food products. It is well-established that there is a direct correlation between the amylose content in flour and the amount of resistant starch (RS) in foods. Recently, some research initiatives have successfully produced high-amylose durum wheat by targeting key enzymes in the amylopectin biosynthesis pathway, though this has resulted in a reduction in seed weight.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!