Embryological manipulations in zebrafish.

Methods Mol Biol

Department of Cellular Biology, The University of Georgia, Athens, GA, USA.

Published: November 2011

Due to the powerful combination of genetic and embryological techniques, the teleost fish Danio rerio has emerged in the last decade as an important model organism for the study of embryonic development. It is relatively easy to inject material such as mRNA or synthetic oligonucleotides to reduce or increase the expression of a gene product. Changes in gene expression can be analyzed at the level of mRNA, by whole-mount in situ hybridization, or at the level of protein, by immunofluorescence. It is also possible to quantitatively analyze protein levels by Western and immunoprecipitation. Cell behavior can be analyzed in detail by cell transplantation and by fate mapping. Because a large number of mutations have been identified in recent years, these methods can be applied in a variety of contexts to provide a deep understanding of gene function that is often more difficult to achieve in other vertebrate model systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-210-6_6DOI Listing

Publication Analysis

Top Keywords

embryological manipulations
4
manipulations zebrafish
4
zebrafish powerful
4
powerful combination
4
combination genetic
4
genetic embryological
4
embryological techniques
4
techniques teleost
4
teleost fish
4
fish danio
4

Similar Publications

Bacteria as Precision Tools for Cancer Therapy.

Microb Biotechnol

January 2025

Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.

The discovery at the end of the 20th century of genes that induce cell death revolutionised the biocontaintment of genetically manipulated bacteria for environmental or agricultural applications. These bacterial 'killer' genes were then assayed for their potential to target and control malignant cells in human cancers. The identification of the bacteriomes in different human organs and tissues, coupled with the observation that bacteria tend to accumulate near tumours, has opened new avenues for anti-cancer strategies.

View Article and Find Full Text PDF

Mechanical forces continuously provide feedback to heart valve morphogenetic programs. In zebrafish, cardiac valve development relies on heart contraction and physical stimuli generated by the beating heart. Intracardiac hemodynamics, driven by blood flow, emerge as fundamental information shaping the development of the embryonic heart.

View Article and Find Full Text PDF

Background: Emerging literature indicates that the microbiome and its byproducts, such as short-chain fatty acids (SCFAs), play an important role in childhood diseases such as allergies and asthma. Specifically, there is evidence suggesting that SCFAs play a critical role in fetal immunoprogramming during the late saccular phase of fetal lung development. An increase in acetate during the late saccular phase is known to play a critical role in inhibiting histone deacetylases (HDACs), resulting in a cascade of events, including Treg immune regulation, involved in fetal immunoprogramming, and reduction in the asthma phenotype.

View Article and Find Full Text PDF

Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics.

Curr Biol

January 2025

Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France. Electronic address:

The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.

View Article and Find Full Text PDF

FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells.

Sci Rep

January 2025

Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.

Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!