A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of the antioxidant peptide SS31 for treatment of burn-induced insulin resistance. | LitMetric

After severe burn injury and other major traumas, glucose tolerance tests demonstrate delayed glucose disposal. This 'diabetes of injury' could be explained by insulin deficiency, and several studies have shown that soon after trauma (ebb phase) insulin concentrations are reduced in the face of hyperglycemia. After resuscitation of trauma patients (flow phase), β-cell responsiveness normalizes and plasma insulin levels are appropriate or even higher than expected, however, glucose intolerance and hyperglycemia persist. In the acute care setting, several approaches have been used for treating insulin resistance, including insulin infusion, propranolol and glucagon-like-peptide-1 (GLP-1). Recently, it was demonstrated that a tetrapeptide with antioxidant properties D-Arg-Dmt-Lys-Phe-NH2 (SS31), but not its inactive analogue Phe-D-Arg-Phe-Lys-NH2 (SS20) attenuates insulin resistance in mice maintained on a high fat diet. In this report the effects of SS31 and SS20 on burn-induced insulin resistance was studied in mice. Oral glucose tolerance tests (OGTT) were performed in 4 groups of 6 mice with thermal injury with or without pre-treatment with SS31 or SS20 and sham controls. In addition, biodistribution of 18FDG was measured in burned mice with and without SS31 treatment and shams (subsets of these animals were also studied by µPET). For comparison purposes, groups of 6 cold-stressed mice with and without SS31 treatment were also studied. The results of these studies demonstrate that SS31 but not SS20 ameliorated burn-induced insulin resistance. In addition, SS31 treatment resulted in marked reduction in the increased 18FDG uptake by brown adipose tissue (BAT) in burned but not cold-stressed animals; suggesting that the stressors act by different mechanisms. Overall, these studies confirmed that SS31 can be used to reverse burn-induced insulin resistance and provide a firm pre-clinical basis for future clinical trials of SS31 for the treatment of insulin resistance in patients with burn injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090514PMC
http://dx.doi.org/10.3892/ijmm.2011.752DOI Listing

Publication Analysis

Top Keywords

insulin resistance
28
ss31 treatment
20
burn-induced insulin
16
ss31 ss20
12
insulin
11
ss31
10
burn injury
8
glucose tolerance
8
tolerance tests
8
mice ss31
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!