CdTe quantum dots (CdTe-QDs) can emit strong and stable room temperature phosphorescence (RTP) via the perturbation effect of a Pb(2+) ion on the surface of a nitrocellulose membrane (NCM). CdTe-QDs-Ab(GAS), the product of CdTe-QDs labelled gastrin antibodies (Ab(GAS)), can not only maintain good RTP characteristics, but can also be used as a RTP sensor and carry out highly specific immunoreactions with gastrin (GAS) to form GAS-Ab(GAS)-CdTe-QDs causing the ΔI(p) of the system to sharply enhance. Thus, a new solid substrate room temperature phosphorescence immunoassay (SSRTPIA) for the determination of GAS was established based on the linear relativity between the ΔI(p) of the system and the content of GAS. The limit of quantification (LOQ) of this method was 0.43 fg spot(-1) with the corresponding concentration being 1.1 × 10(-12) g mL(-1) and sampling quantity being 0.40 per spot(-1). This highly specific, accurate, selective and sensitive RTP sensor has been applied to the determination of GAS in biological samples and the diagnosis of diseases, and the results agreed well with those obtained by radioimmunometric assay (RIA). Meanwhile, the mechanism of SSRTPIA for the determination of GAS using CdTe-QDs-Ab(GAS) as the RTP sensor was discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1an15225d | DOI Listing |
Sci Total Environ
December 2024
Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).
View Article and Find Full Text PDFChem Sci
September 2024
College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
Developing color-tunable ultralong room temperature phosphorescence (RTP) materials with variable afterglow is essential for applications in displays, sensors, information encryption, and optoelectronic devices. However, designing full-color ultralong RTP for persistent luminescence remains a significant challenge. Here, we propose a straightforward strategy to achieve predictable full-color afterglow using readily available disperse dyes in polymeric systems, the phosphorescence resonance energy transfer (PRET) process.
View Article and Find Full Text PDFDalton Trans
July 2024
Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.
In this work, we report on five novel coordination polymers (CPs) based on the linkage of the [Cd(6apic)] building block [where 6apic = 6-aminopicolinate] by different bipyridine-type organic spacers, forming different coordination compounds with the following formulae: [Cd(μ-6apic)] (1), {[Cd(6apic)(μ-bipy)]·HO} (2), {[Cd(6apic)(μ-bpe)]·2HO} (3), [Cd(6apic)(μ-6apic)(μ-bpa)] (4) and {[Cd(6apic)(μ-tmbp)]·7HO} (5) [where bipy = 4,4'-bipyridine, bpe = 1,2-di(4-pyridyl)ethylene, bpa = 1,2-di(4-pyridyl)ethane (bpa) and tmbp = 1,3-di(4-pyridyl)propane]. Most of the synthesized compounds form infinite metal-organic rods through the linkage of the building block by the bipyridine-type linker, except in the case of compound 4 whose assembly forms a densely packed 3D architecture. All compounds were fully characterized and their photoluminescence properties were studied experimentally and computationally through density functional theory (DFT) calculations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania. Electronic address:
Three derivatives of fluorinated triphenylpyrimidine with the attached carbazole, phenothiazine, or acridan donor moieties are synthesized by Buchwald-Hartwig reactions. The impact of the donor units on emissive and other properties of the compounds is reported. The compounds exhibit excellent thermal stability, competitive photophysical phenomena such as room temperature phosphorescence (RTP) appearing when compounds are molecularly dispersed in the rigid polymer matrix and thermally activated delayed fluorescence (TADF).
View Article and Find Full Text PDFNat Commun
April 2024
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!