Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significant progress has recently been obtained in our understanding of cellular entry by nonenveloped viruses (NEVs). A key step in the entry process involves the disruption or remodeling of the limiting cell membrane allowing the virus to gain access to the cellular replication machinery. Biochemical, genetic and structural data from diverse virus groups have shed light on the process of membrane penetration thereby revealing both the conservation and divergence of the mechanisms and principles governing this process. In general, membrane breach is achieved via the highly regulated spatiotemporal exposure of a virally encoded membrane lytic factor, resulting in the transfer of the viral genome or nucleocapsid into the cytosol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144554 | PMC |
http://dx.doi.org/10.1016/j.coviro.2011.05.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!