Enzymatic properties and substrate specificity of the trehalose phosphorylase from Caldanaerobacter subterraneus.

Appl Environ Microbiol

Department of Biochemical and Microbial Technology, Center of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.

Published: October 2011

A putative glycoside phosphorylase from Caldanaerobacter subterraneus subsp. pacificus was recombinantly expressed in Escherichia coli, after codon optimization and chemical synthesis of the encoding gene. The enzyme was purified by His tag chromatography and was found to be specifically active toward trehalose, with an optimal temperature of 80°C. In addition, no loss of activity could be detected after 1 h of incubation at 65°C, which means that it is the most stable trehalose phosphorylase reported so far. The substrate specificity was investigated in detail by measuring the relative activity on a range of alternative acceptors, applied in the reverse synthetic reaction, and determining the kinetic parameters for the best acceptors. These results were rationalized based on the enzyme-substrate interactions observed in a homology model with a docked ligand. The specificity for the orientation of the acceptor's hydroxyl groups was found to decrease in the following order: C-3 > C-2 > C-4. This results in a particularly high activity on the monosaccharides d-fucose, d-xylose, l-arabinose, and d-galactose, as well as on l-fucose. However, determination of the kinetic parameters revealed that these acceptors bind less tightly in the active site than the natural acceptor d-glucose, resulting in drastically increased K(m) values. Nevertheless, the enzyme's high thermostability and broad acceptor specificity make it a valuable candidate for industrial disaccharide synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187076PMC
http://dx.doi.org/10.1128/AEM.05190-11DOI Listing

Publication Analysis

Top Keywords

substrate specificity
8
trehalose phosphorylase
8
phosphorylase caldanaerobacter
8
caldanaerobacter subterraneus
8
kinetic parameters
8
enzymatic properties
4
properties substrate
4
specificity
4
specificity trehalose
4
subterraneus putative
4

Similar Publications

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Protein phosphatases are critical for regulating cell signaling, cell cycle, and cell fate decisions, and their dysregulation leads to an array of human diseases like cancer. The dual specificity phosphatases (DUSPs) have emerged as important factors driving tumorigenesis and cancer therapy resistance. DUSP12 is a poorly characterized atypical DUSP widely conserved throughout evolution.

View Article and Find Full Text PDF

Natural products have long been a rich source of diverse and clinically effective drug candidates. Non-ribosomal peptides (NRPs), polyketides (PKs), and NRP-PK hybrids are three classes of natural products that display a broad range of bioactivities, including antibiotic, antifungal, anticancer, and immunosuppressant activities. However, discovering these compounds through traditional bioactivity-guided techniques is costly and time-consuming, often resulting in the rediscovery of known molecules.

View Article and Find Full Text PDF

Alterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.

View Article and Find Full Text PDF

Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!