A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. | LitMetric

Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy.

Ann Bot

Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain.

Published: September 2011

AI Article Synopsis

  • The study investigates the role of epigenetic control in the dormancy of Castanea sativa (sweet chestnut) buds, aiming to identify differentially expressed genes during dormant and non-dormant phases.
  • Two cDNA libraries were created to analyze the transcriptomes of dormant and non-dormant buds, resulting in 512 expressed sequence tags (ESTs) that categorized dormant buds with stress response genes and non-dormant ones with growth-related genes.
  • The research highlights specific genes related to epigenetic modifications in relation to dormancy and growth, revealing a cyclical expression pattern across bud development stages and suggesting a shared basis of dormancy mechanisms among different plant species.

Article Abstract

Background And Aims: Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds.

Methods: Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released.

Key Results: A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems.

Conclusions: Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes and are likely to be under different epigenetic control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158698PMC
http://dx.doi.org/10.1093/aob/mcr185DOI Listing

Publication Analysis

Top Keywords

bud dormancy
20
epigenetic control
16
genes associated
12
dormancy
10
genes
10
castanea sativa
8
role epigenetic
8
control bud
8
subtractive hybridization
8
cdna libraries
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!