Transcription drives supercoiling which forms and stabilizes single-stranded (ss) DNA secondary structures with loops exposing G and C bases that are intrinsically mutable and vulnerable to non-enzymatic hydrolytic reactions. Since many studies in prokaryotes have shown direct correlations between the frequencies of transcription and mutation, we conducted in silico analyses using the computer program, mfg, which simulates transcription and predicts the location of known mutable bases in loops of high-stability secondary structures. Mfg analyses of the p53 tumor suppressor gene predicted the location of mutable bases and mutation frequencies correlated with the extent to which these mutable bases were exposed in secondary structures. In vitro analyses have now confirmed that the 12 most mutable bases in p53 are in fact located in predicted ssDNA loops of these structures. Data show that genotoxins have two independent effects on mutagenesis and the incidence of cancer: Firstly, they activate p53 transcription, which increases the number of exposed mutable bases and also increases mutation frequency. Secondly, genotoxins increase the frequency of G-to-T transversions resulting in a decrease in G-to-A and C mutations. This precise compensatory shift in the 'fate' of G mutations has no impact on mutation frequency. Moreover, it is consistent with our proposed mechanism of mutagenesis in which the frequency of G exposure in ssDNA via transcription is rate limiting for mutation frequency in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179427PMC
http://dx.doi.org/10.1093/carcin/bgr177DOI Listing

Publication Analysis

Top Keywords

mutable bases
20
secondary structures
12
mutation frequency
12
location mutable
8
bases
6
mutable
6
transcription
5
mutation
5
frequency
5
roles transcription
4

Similar Publications

Unlabelled: Although carcinogenesis is a multi-factorial process, the mutability and the capacity of cells to proliferate are among the major features of the cells that contribute together to the initiation and promotion steps of cancer formation. Particularly, mutability can be quantified by hyper-recombination rate assessed with specific plasmid assay, hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations frequency rate, or MRE11 nuclease activities. Cell proliferation can be assessed by flow cytometry by quantifying G2/M, G1 arrests, or global cellular evasion.

View Article and Find Full Text PDF

Mesoscale DNA feature in antibody-coding sequence facilitates somatic hypermutation.

Cell

May 2023

State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai 200052, China. Electronic address:

Article Synopsis
  • Somatic hypermutation (SHM) helps make our antibodies better at fighting off germs by creating tiny changes in their DNA.
  • Scientists found that the flexibility of DNA around certain spots helps decide where these changes happen most often.
  • Their research shows that these patterns of mutation can be controlled and may help create better models for discovering new treatments for diseases like lymphoma.
View Article and Find Full Text PDF

Background: Genomic DNA has been shaped by mutational processes through evolution. The cellular machinery for error correction and repair has left its marks in the nucleotide composition along with structural and functional constraints. Therefore, the probability of observing a base in a certain position in the human genome is highly context-dependent.

View Article and Find Full Text PDF

DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male-female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control.

View Article and Find Full Text PDF

The settlement of Great Britain by Germanic-speaking people from continental northwest Europe in the Early Medieval period (early 5th to mid 11th centuries CE) has long been recognised as an important event, but uncertainty remains about the number of settlers and the nature of their relationship with the preexisting inhabitants of the island. In the study reported here, we sought to shed light on these issues by using 3D shape analysis techniques to compare the cranial bases of Anglo-Saxon skeletons to those of skeletons from Great Britain that pre-date the Early Medieval period and skeletons from Denmark that date to the Iron Age. Analyses that focused on Early Anglo-Saxon skeletons indicated that between two-thirds and three-quarters of Anglo-Saxon individuals were of continental northwest Europe ancestry, while between a quarter and one-third were of local ancestry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!