Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular Salmonella enterica translocate effector proteins that modify microtubule-dependent transport processes of the host cell and modulate the biogenesis of the Salmonella-containing vacuole (SCV). One functional consequence is the induction of tubular aggregates of endosomal membranes, termed Salmonella-induced filaments or SIFs, and further tubular membrane compartments have recently been described. SIFs are unique, highly dynamic compartments that form by modification of vesicular transport on microtubules. The molecular mechanism of the interference of intracellular Salmonella with host cell vesicular transport is still elusive, but recent studies demonstrate the complexity of pathogenic activities and the intricacy of manipulating host cell functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2011.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!