The use of non-human primate models is required to understand the ageing process and evaluate new therapies against age-associated pathologies. The present article summarizes all the contributions of the grey mouse lemur Microcebus murinus, a small nocturnal prosimian primate, to the understanding of the mechanisms of ageing. Results from studies of both healthy and pathological ageing research on the grey mouse lemur demonstrated that this animal is a unique model to study age-dependent changes in endocrine systems, biological rhythms, thermoregulation, sensorial, cerebral and cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2011.07.001DOI Listing

Publication Analysis

Top Keywords

grey mouse
12
mouse lemur
12
non-human primate
8
ageing studies
8
lemur non-human
4
primate model
4
ageing
4
model ageing
4
studies non-human
4
primate models
4

Similar Publications

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

Functional connectivity within sensorimotor cortical and striatal regions is regulated by sepsis in a sex-dependent manner.

Neuroimage

January 2025

Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Article Synopsis
  • Sepsis leads to systemic immune issues and organ failure, often resulting in severe brain disability, with young females showing better recovery than males.
  • Using a mouse model, researchers found that after experiencing sepsis, both male and female mice showed weight regain and reduced gut microbiome diversity, but males displayed more significant immune changes and brain inflammation.
  • fMRI analysis highlighted that while both sexes experienced similar changes in certain brain areas, male mice had altered connectivity patterns suggesting a delayed recovery process compared to females, indicating a complex, sex-dependent response to sepsis.
View Article and Find Full Text PDF

A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice.

Theranostics

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, -expressing (Tac2) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. : We combined activity mapping, Ca recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model.

View Article and Find Full Text PDF

Dysregulation of the dopamine (DA) system is a hallmark of substance use disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!