The human ubiquitin C promoter drives selective expression in principal neurons in the brain of a transgenic mouse line.

Neurochem Int

Carl-Ludwig-Institute for Physiology and Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, Faculty of Medicine, University of Leipzig, Liebigstr. 21, D-04103 Leipzig, Germany.

Published: November 2011

The specificity of promoters used to drive the expression of proteins of interest is a crucial determinant of transgenesis. Numerous strategies have been developed to restrict expression on a certain cell population. On the other hand it has also remained challenging to obtain ubiquitous expression of transgenes which is needed for example to generate recombination reporter mice or to induce expression by recombination mediated excision of STOP-cassettes. We have generated transgenic mice with the expression of nuclear β-galactosidase driven by the human ubiquitin C promoter thought to mediate ubiquitous expression. However, in the brains of these transgenic mice the expression of the transgene was strikingly limited to principal neurons, while no expression was detected in interneurons or glial cells. These results indicate that the human ubiquitin C promoter might be useful to selectively target projections neurons of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2011.07.008DOI Listing

Publication Analysis

Top Keywords

human ubiquitin
12
ubiquitin promoter
12
expression
9
principal neurons
8
neurons brain
8
ubiquitous expression
8
transgenic mice
8
mice expression
8
promoter drives
4
drives selective
4

Similar Publications

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation.

FASEB J

January 2025

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.

Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.

View Article and Find Full Text PDF

Journey of PROTAC: From Bench to Clinical Trial and Beyond.

Biochemistry

January 2025

Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.

Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein.

View Article and Find Full Text PDF

Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review.

Cells

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

Cullin-5 (Cul5) coordinates assembly of cullin-RING-E3 ubiquitin (Ub) ligase (CRL) complexes that include Suppressor of Cytokine Signaling (SOCS)-box-containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!