Identification, characterization and regulation studies of the aconitase of Paracoccidioides brasiliensis.

Fungal Biol

Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.

Published: August 2011

A protein species preferentially expressed in yeast cells with a molecular mass of 80 kDa and isoeletric point (pI) of 7.79 was isolated from the proteome of Paracoccidioides brasiliensis and characterized as an aconitase (ACO) (E.C. 4.2.1.3). ACO is an enzyme that catalyzes the isomerization of citrate to isocitrate in both the Krebs cycle and the glyoxylate cycle. We report the cloning and characterization of the cDNA encoding the ACO of P. brasiliensis (PbACO). The cDNA showed a 2361 bp open reading frame (ORF) and encoded a predicted protein with 787 amino acids. Polyclonal antibodies against the purified recombinant PbACO was obtained in order to analyze the subcellular localization of the molecule in P. brasiliensis. The protein is present in the extracellular fluid, cell wall enriched fraction, mitochondria, cytosol and peroxisomes of yeast cells as demonstrated by western blot and immunocytochemistry analysis. The expression analysis of the Pbaco gene was performed by quantitative real-time RT-PCR and results demonstrated an increased expression in yeast cells compared to mycelia. Real-time RT-PCR assays was also used to evaluate the Pbaco expression when the fungus grows on media with acetate and ethanol as sole carbon sources and in different iron levels. The results demonstrated that Pbaco transcript is over expressed in acetate and ethanol as sole carbon sources and in high-iron conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2011.02.011DOI Listing

Publication Analysis

Top Keywords

yeast cells
12
paracoccidioides brasiliensis
8
brasiliensis protein
8
real-time rt-pcr
8
acetate ethanol
8
ethanol sole
8
sole carbon
8
carbon sources
8
pbaco
5
identification characterization
4

Similar Publications

Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification.

Life Sci Alliance

March 2025

https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA

Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).

View Article and Find Full Text PDF

Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code (NZ) element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p.

View Article and Find Full Text PDF

Entry of Enveloped Viruses into Host Cells: Membrane Fusion.

Subcell Biochem

December 2024

Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.

View Article and Find Full Text PDF

ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.

Appl Biochem Biotechnol

December 2024

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu Jeonju, Jeonbuk, 54896, South Korea.

This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!