Precise neuronal connectivity in the nervous system depends on specific axonal and dendritic targeting of individual neurons. In the Drosophila brain, olfactory projection neurons convey odor information from the antennal lobe to higher order brain centers such as the mushroom body and the lateral horn. Here, we show that Homothorax (Hth), a TALE-class homeodomain transcription factor, is expressed in many of the antennal lobe neurons including projection neurons and local interneurons. In addition, HTH is expressed in the progenitors of the olfactory projection neurons, and the activity of hth is required for the generation of the lateral but not for the anterodorsal and ventral lineages. MARCM analyses show that the hth is essential for correct dendritic targeting of projection neurons in the antennal lobe. Moreover, the activity of hth is required for axonal fasciculation, correct routing and terminal branching of the projection neurons. We also show that another TALE-class homeodomain protein, Extradenticle (Exd), is required for the dendritic and axonal development of projection neurons. Mutation of exd causes projection neuron defects that are reminiscent of the phenotypes caused by the loss of the hth activity. Double immunostaining experiments show that Hth and Exd are coexpressed in olfactory projection neurons and their progenitors, and that the expressions of Hth and Exd require the activity of each other gene. These results thus demonstrate the functional importance of the TALE-class homeodomain proteins in cell-type specification and precise wiring of the Drosophila olfactory network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2011.07.018DOI Listing

Publication Analysis

Top Keywords

projection neurons
32
tale-class homeodomain
16
olfactory projection
16
antennal lobe
12
neurons
10
projection
9
homeodomain transcription
8
dendritic axonal
8
neurons drosophila
8
drosophila brain
8

Similar Publications

The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin.

Vitam Horm

January 2025

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:

The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!