Scaffolds that couple electrical and elastic properties may be valuable for cardiac cell function. However, existing conductive materials do not mimic physiological properties. We prepared and characterized a tunable, hybrid hydrogel scaffold based on Au nanoparticles homogeneously synthesized throughout a polymer templated gel. Conductive gels had Young's moduli more similar to myocardium relative to polyaniline and polypyrrole, by 1-4 orders of magnitude. Neonatal rat cardiomyocytes exhibited increased expression of connexin 43 on hybrid scaffolds relative to HEMA with or without electrical stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl201514a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!