We demonstrate the synthesis of large-area graphene on Co, a complementary metal-oxide-semiconductor (CMOS)-compatible metal, using acetylene (C(2)H(2)) as a precursor in a chemical vapor deposition (CVD)-based method. Cobalt films were deposited on SiO(2)/Si, and the influence of Co film thickness on monolayer graphene growth was studied, based on the solubility of C in Co. The surface area coverage of monolayer graphene was observed to increase with decreasing Co film thickness. A thorough Raman spectroscopic analysis reveals that graphene films, grown on an optimized Co film thickness, are principally composed of monolayer graphene. Transport properties of monolayer graphene films were investigated by fabrication of back-gated graphene field-effect transistors (GFETs), which exhibited high hole and electron mobility of ∼1600 cm(2)/V s and ∼1000 cm(2)/V s, respectively, and a low trap density of ∼1.2 × 10(11) cm(-2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn202012mDOI Listing

Publication Analysis

Top Keywords

monolayer graphene
16
film thickness
12
synthesis large-area
8
graphene
8
chemical vapor
8
vapor deposition
8
graphene films
8
cmos-compatible synthesis
4
large-area high-mobility
4
high-mobility graphene
4

Similar Publications

Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective.

Chem Rev

January 2025

Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States.

Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods.

View Article and Find Full Text PDF

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

Predicting Irida-Silicene: A Novel 2D Silicon Allotrope.

ACS Omega

December 2024

Faculty UnB Planaltina, Materials Science Postgraduate Program, University of Brasília, Brasília, Federal District 73345-010, Brazil.

Two-dimensional (2D) silicon-based materials have garnered significant attention for their promising properties, making them suitable for various advanced technological applications. Here, we present Irida-Silicene (ISi), a novel 2D silicon allotrope inspired by Irida-Graphene (IG), which was recently proposed and is entirely composed of carbon atoms. ISi exhibits a buckled structure composed of 3-6-8 membered rings, unlike its planar carbon counterpart.

View Article and Find Full Text PDF

This work presents a density functional theory (DFT) study of substitutional and adsorption-based halogen (I or F) doping of WS-based transistors to enhance their contact properties. Substitutional doping of the WS monolayer with halogens results in -type behavior, while halogen adsorption on the surface of the WS monolayer induces -type behavior. This is attributed to differing directions of charge flow, as supported by the Mulliken analysis.

View Article and Find Full Text PDF

Spin orbit coupling effect on coherent transport properties of graphene nanoscopic rings in external magnetic field.

Sci Rep

December 2024

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.

A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!