[Preparation and luminescence properties of nanomaterials TiO2-SiO2 doped with Eu3+].

Guang Pu Xue Yu Guang Pu Fen Xi

Chemistry and Environment Science College, Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Huhhot 010022, China.

Published: May 2011

In the present paper, the samples of nanomaterials TiO2-SiO2:Eu3+ with different proportion of Ti/Si were prepared with the sol-gel method, and influence of the proportion of Ti/Si on the luminescence properties of samples have was studied. The structure of the samples was examined by FTIR, indicating that the compound TiO2 and SiO2 reacted, forming the new chemical bond of Ti-O-Si. The TEM of samples show that TiO2-SiO2:Eu3+ are sphericity nanoparticles with monodispersion and uniform size of 35 nm. The samples were still anatase phase after annealing at 900 degrees C, which was studied by XRD and SAED, suggesting that the bond of Ti-O-Si was conducive to the stability of anatase phase. There will be isoelectronic trap as Si4+ enters the TiO2 lattice replacing some of the Ti4+ position, and this structure is conducive to transfering energy and improving the transition of Eu3+ (7F0 --> 5D2), which were found by excitation and emission spectra.

Download full-text PDF

Source

Publication Analysis

Top Keywords

luminescence properties
8
proportion ti/si
8
bond ti-o-si
8
anatase phase
8
samples
5
[preparation luminescence
4
properties nanomaterials
4
nanomaterials tio2-sio2
4
tio2-sio2 doped
4
doped eu3+]
4

Similar Publications

Mechanochromic materials, known for their ability to change color in response to mechanical stimuli such as pressure, stretching, grinding, or rubbing, hold significant importance due to their diverse applications. In this study, we synthesized and characterized two novel pyridine-tethered imidazo[1,2-a]pyridine mechanoresponsive luminogens with appended tetraphenylethene, named GBY-10 and GBY-11. GBY-10 exhibited reversible mechanofluorochromism, while GBY-11 did not revert to its original color after solvent fuming.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics.

View Article and Find Full Text PDF

Emission Tuning of Nonconventional Luminescent Materials via Cluster Engineering.

Small

January 2025

Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.

Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.

View Article and Find Full Text PDF

Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale.

Small Methods

January 2025

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!