Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy.

Biomed Microdevices

Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

Published: December 2011

Electroendocytosis (EED), i.e. electric field-induced endocytosis, is a technique for bio-molecule and drug delivery to cells using a pulsed electric field lower than that applied in electroporation (EP). Different from EP in which nanometer-sized electropores appear on the plasma membrane lipid bilayer, EED induces cell membrane internalization and fission via endocytotic vesicles. In this study, we conduct comprehensive experimental study on the EED of HeLa cells using a micro chip and the corresponding endocytotic vesicles were visualized and investigated by using FM4-64 fluorescent dye and in situ fluorescence microscopy. The uptake of molecules by the EED of cells was characterized by average intracellular fluorescent intensity from a large number (>2,000) of single cells. The EED efficiency was determined as a function of three electric parameters (electric field strength, pulse duration, total electric treatment time). The EED efficiency as a function of electric field strength clearly shows biphasic characteristics at different experimental conditions. The EED experiments using cytoskeleton inhibitors illustrate unique mechanisms distinct from EP. This study provides a foundation for further on-chip study of the time-dependent mechanism of EED at the single-cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-011-9576-9DOI Listing

Publication Analysis

Top Keywords

electric field
12
micro chip
8
situ fluorescence
8
fluorescence microscopy
8
eed
8
endocytotic vesicles
8
eed efficiency
8
field strength
8
electric
6
single-cell electroendocytosis
4

Similar Publications

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Mobile technologies enable Parkinson's patients to improve their quality of life, manage symptoms, and enhance overall well-being through various applications (apps). There is no integrated list of specific capabilities available to cater to the unique needs of Parkinson's patient-focused mobile apps.

View Article and Find Full Text PDF

Seed tuber microbiome can predict growth potential of potato varieties.

Nat Microbiol

December 2024

Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.

Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields.

View Article and Find Full Text PDF

Unconventional gas reservoirs, characterized by their complex geologies and challenging extraction conditions, demand innovative approaches to enhance gas production and ensure economic viability. Well stimulation techniques, such as hydraulic fracturing and acidizing, have become indispensable tools in unlocking the potential of these tight formations. However, the effectiveness of these techniques can vary widely depending on the specific characteristics of the reservoir.

View Article and Find Full Text PDF

We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!