Background: Polyglutamine (polyQ)-induced protein aggregation is the hallmark of a group of neurodegenerative diseases, including Huntington's disease. We hypothesized that a protease that could cleave polyQ stretches would intervene in the initial events leading to pathogenesis in these diseases. To prove this concept, we aimed to generate a protease possessing substrate specificity for polyQ stretches.

Methodology/principal Findings: Hepatitis A virus (HAV) 3C protease (3CP) was subjected to engineering using a yeast-based method known as the Genetic Assay for Site-specific Proteolysis (GASP). Analysis of the substrate specificity revealed that 3CP can cleave substrates containing glutamine at positions P5, P4, P3, P1, P2', or P3', but not substrates containing glutamine at the P2 or P1' positions. To accommodate glutamine at P2 and P1', key residues comprising the active sites of the S2 or S1' pockets were separately randomized and screened. The resulting sets of variants were combined by shuffling and further subjected to two rounds of randomization and screening using a substrate containing glutamines from positions P5 through P3'. One of the selected variants (Var26) reduced the expression level and aggregation of a huntingtin exon1-GFP fusion protein containing a pathogenic polyQ stretch (HttEx1(97Q)-GFP) in the neuroblastoma cell line SH-SY5Y. Var26 also prevented cell death and caspase 3 activation induced by HttEx1(97Q)-GFP. These protective effects of Var26 were proteolytic activity-dependent.

Conclusions/significance: These data provide a proof-of-concept that proteolytic cleavage of polyQ stretches could be an effective modality for the treatment of polyQ diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140514PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022554PLOS

Publication Analysis

Top Keywords

substrate specificity
12
cell death
8
polyq stretches
8
substrates glutamine
8
glutamine p1'
8
polyq
5
engineered viral
4
protease
4
viral protease
4
protease exhibiting
4

Similar Publications

Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.

View Article and Find Full Text PDF

The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

SERS-Based Local Field Enhancement in Biosensing Applications.

Molecules

December 2024

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures.

View Article and Find Full Text PDF

Theoretical Studies on the Reaction Mechanism for the Cycloaddition of Zwitterionic π-Allenyl Palladium Species: Substrate-Controlled Isomerization.

Molecules

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Zwitterionic π-allenyl palladium species are newly developed intermediates. A substrate-controlled step existed in the cycloaddition of zwitterionic π-allenyl palladium species with tropsulfimides or tropones. With the assistance of previously experimental studies, zwitterionic allenyl/propargyl palladium species was provenly found by HRMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!