Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143141 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022498 | PLOS |
Indian J Med Microbiol
January 2025
Regional Viral Research and Diagnostic Laboratory, Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India. Electronic address:
Purpose: Dengue virus, a major global health concern, exhibits significant genetic diversity, leading to distinct serotypes and genotypes. Dengue is the second most common disease spread by mosquitoes that infect humans, after malaria. In recent decades, there has also been a shift in the tendencies of virus transmission from urban to peri-urban and rural settings.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China.
This paper reviews recent developments and key advances in terahertz (THz) science, technology, and applications, focusing on 3 core areas: astronomy, telecommunications, and biophysics. In THz astronomy, it highlights major discoveries and ongoing projects, emphasizing the role of advanced superconducting technologies, including superconductor-insulator-superconductor (SIS) mixers, hot electron boundedness spectroscopy (HEB), transition-edge sensors (TESs), and kinetic inductance detectors (KIDs), while exploring prospects in the field. For THz telecommunication, it discusses progress in solid-state sources, new communication technologies operating within the THz band, and diverse modulation methods that enhance transmission capabilities.
View Article and Find Full Text PDFFront Microbiol
January 2025
Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany.
Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.
View Article and Find Full Text PDFTrauma Violence Abuse
January 2025
Criminology, School of Social and Political Sciences, The University of Melbourne, Melbourne, VIC, Australia.
Sexual violence experienced by LGBTQ+ adults is a rapidly expanding field of academic study. Therefore, there is a need for a synthesis and critical analysis of the research. The aim of this review was to conduct a critical review of the academic literature on adult LGBTQ+ sexual violence and to provide recommendations for future research.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!