In recent years, many mouse models have been developed to mark and trace the fate of adult cell populations using fluorescent proteins. High-resolution visualization of such fluorescent markers in their physiological setting is thus an important aspect of adult stem cell research. Here we describe a protocol to produce sections (150-200 μm) of near-native tissue with optimal tissue and cellular morphology by avoiding artifacts inherent in standard freezing or embedding procedures. The activity of genetically expressed fluorescent proteins is maintained, thereby enabling high-resolution three-dimensional (3D) reconstructions of fluorescent structures in virtually all types of tissues. The procedure allows immunofluorescence labeling of proteins to depths up to 50 μm, as well as a chemical 'Click-iT' reaction to detect DNA-intercalating analogs such as ethynyl deoxyuridine (EdU). Generation of near-native sections ready for imaging analysis takes approximately 2-3 h. Postsectioning processes, such as antibody labeling or EdU detection, take up to 10 h.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2011.365DOI Listing

Publication Analysis

Top Keywords

fluorescent proteins
12
fluorescent
5
slide preparation
4
preparation single-cell-resolution
4
single-cell-resolution imaging
4
imaging fluorescent
4
proteins
4
proteins three-dimensional
4
three-dimensional near-native
4
near-native environment
4

Similar Publications

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

CK-666, an inhibitor of the actin-related protein complex 2/3 (Arp2/3), can suppress lamellipodia formation and cell migration. However, research on its application in tumor therapy is still limited. Using RNA-seq, we clustered and analyzed the functions of differentially expressed mRNAs in CK-666-treated tumor cells.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!