Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate.

Microbiology (Reading)

Institute for Energy and the Environment, The University of Oklahoma, Norman, OK 73019, USA.

Published: October 2011

Syntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H(2)- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of Desulfovibrio alaskensis G20 was screened for loss of the ability to grow syntrophically with Methanospirillum hungatei JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained. All 20 mutants grew in pure culture on lactate under sulfidogenic conditions at a rate and to a maximum OD(600) similar to those of the parental strain. The largest number of mutations that affected syntrophic growth with lactate was in genes encoding proteins involved in H(2) oxidation, electron transfer, hydrogenase post-translational modification, pyruvate degradation and signal transduction. The qrcB gene, encoding a quinone reductase complex (Qrc), and cycA, encoding the periplasmic tetrahaem cytochrome c(3) (TpIc(3)), were required by G20 to grow syntrophically with lactate. A mutant in the hydA gene, encoding an Fe-only hydrogenase (Hyd), is also impaired in syntrophic growth with lactate. The other mutants grew more slowly than the parental strain in syntrophic culture with M. hungatei JF-1. qrcB and cycA were shown previously to be required for growth of G20 pure cultures with H(2) and sulfate. Washed cells of the parental strain produced H(2) from either lactate or pyruvate, but washed cells of qrcB, cycA and hydA mutants produced H(2) at rates similar to the parental strain from pyruvate and did not produce significant amounts of H(2) from lactate. Real-time quantitative PCR assays showed increases in expression of the above three genes during syntrophic growth compared with pure-culture growth with lactate and sulfate. Our work shows that Hyd, Qrc and TpIc(3) are involved in H(2) production during syntrophic lactate metabolism by D. alaskensis G20 and emphasizes the importance of H(2) production for syntrophic lactate metabolism in this strain.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.051284-0DOI Listing

Publication Analysis

Top Keywords

syntrophic growth
24
growth lactate
16
parental strain
16
alaskensis g20
12
grow syntrophically
12
lactate
10
syntrophic
9
desulfovibrio alaskensis
8
growth
8
ability grow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!