CD4(+) CD25(+) regulatory T cells (T(reg) cells) are an attractive adoptive cell therapy in mediating transplantation tolerance. T-cell receptor (TcR) activation is critical for T(reg) function, suggesting that the TcR avidity of T(reg) cells used in therapy may affect the therapeutic outcome. To address this, we compared the regulatory capacity of T(reg) lines expressing TcRs derived from two TcR transgenic mice shown to have the same specificity but different functional avidities. T(reg) lines generated from CD4(+)CD25(+) T cells from C57BL/6 mice were transduced with one of either of these TcRs. The antigen specificity of the transduced T(reg) lines was confirmed in vitro. T(reg) lines expressing the TcR with higher functional avidity showed stronger suppressive capacity in a linked suppression model in vitro. Furthermore, the same T(reg) lines demonstrated a stronger proliferation in vivo following antigen exposure. Pretreatment of recipient BL/6 mice with these T(reg) cells, together with anti-CD8 antibody and Rapamycin therapies, prolonged survival of BALB/c skins, as compared with mice that received T(reg) lines with lower TcR avidity. Taken together, these data suggest that the TcR functional avidity may be important for T(reg) function. It highlights the fact that strategies to select T(reg) with higher functional avidity might be beneficial for immunotherapy in transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-6143.2011.03650.xDOI Listing

Publication Analysis

Top Keywords

treg lines
24
functional avidity
16
treg
12
treg cells
12
treg function
8
tcr avidity
8
avidity treg
8
lines expressing
8
vitro treg
8
higher functional
8

Similar Publications

Introduction: Crohn's disease (CD) is a chronic, immune-mediated inflammatory bowel disease (IBD), presenting with symptoms of abdominal pain and bleeding from the gastrointestinal tract. There is no known cure. In vitro-expanded 'thymus-derived' regulatory T cells (tTreg) have shown promise in preclinical models of IBD, leading to interest in their use as a potential therapy in CD.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

The reasons for the low frequency of anti-Ro/SS-A antibody in patients with HTLV-1-associated myelopathy complicated with Sjögren's syndrome (SS) are unclear. In this study, we investigated whether HTLV-1-infected T cells can act directly on B cells and suppress B cells' production of antibodies, including anti-Ro/SS-A antibody. For this purpose, we established an in vitro T-cell-free B-cell antibody production system.

View Article and Find Full Text PDF

Estrogen sulfotransferase (SULT1E1), a member of the sulfotransferase family (SULTs), is the enzyme with the strongest affinity for estrogen. Despite significant associations between SULT1E1 and the progression and prognosis of a range of diseases, its functional role and potential mechanisms in lung adenocarcinoma (LUAD) remain unclear. The objective of this study was to examine the potential of SULT1E1 as a biomarker for LUAD.

View Article and Find Full Text PDF

Objective: Our study investigated how arecoline-induced extracellular vesicle (EV) secretion suppresses PAX1 protein production through DNA hypermethylation and examined whether PAX1 downregulation enhances cancer stemness and immunosuppression in the tumor microenvironment.

Materials And Methods: EVs were isolated from SAS/TW2.6 cancer cell lines using ultracentrifugation and identified using transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!