A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coarse-grained Monte Carlo simulations of the phase transition of the Potts model on weighted networks. | LitMetric

Coarse-grained Monte Carlo simulations of the phase transition of the Potts model on weighted networks.

Phys Rev E Stat Nonlin Soft Matter Phys

Hefei National Laboratory for Physical Sciences at Microscales & Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.

Published: June 2011

Developing an effective coarse-grained (CG) approach is a promising way for studying dynamics on large size networks. In the present work, we have proposed a strength-based CG (s-CG) method to study critical phenomena of the Potts model on weighted complex networks. By merging nodes with close strengths together, the original network is reduced to a CG network with much smaller size, on which the CG Hamiltonian can be well defined. In particular, we make an error analysis and show that our s-CG approach satisfies the condition of statistical consistency, which demands that the equilibrium probability distribution of the CG model matches that of the microscopic counterpart. Extensive numerical simulations are performed on scale-free networks and random networks, without or with strength correlation, showing that this s-CG approach works very well in reproducing the phase diagrams, fluctuations, and finite-size effects of the microscopic model, while the d-CG approach proposed in our recent work [Phys. Rev. E 82, 011107 (2010)] does not.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.066109DOI Listing

Publication Analysis

Top Keywords

potts model
8
model weighted
8
s-cg approach
8
networks
5
coarse-grained monte
4
monte carlo
4
carlo simulations
4
simulations phase
4
phase transition
4
transition potts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!