Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing an effective coarse-grained (CG) approach is a promising way for studying dynamics on large size networks. In the present work, we have proposed a strength-based CG (s-CG) method to study critical phenomena of the Potts model on weighted complex networks. By merging nodes with close strengths together, the original network is reduced to a CG network with much smaller size, on which the CG Hamiltonian can be well defined. In particular, we make an error analysis and show that our s-CG approach satisfies the condition of statistical consistency, which demands that the equilibrium probability distribution of the CG model matches that of the microscopic counterpart. Extensive numerical simulations are performed on scale-free networks and random networks, without or with strength correlation, showing that this s-CG approach works very well in reproducing the phase diagrams, fluctuations, and finite-size effects of the microscopic model, while the d-CG approach proposed in our recent work [Phys. Rev. E 82, 011107 (2010)] does not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.83.066109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!