Passivating lithium ion (Li) battery electrode surfaces to prevent electrolyte decomposition is critical for battery operations. Recent work on conformal atomic layer deposition (ALD) coating of anodes and cathodes has shown significant technological promise. ALD further provides well-characterized model platforms for understanding electrolyte decomposition initiated by electron tunneling through a passivating layer. First-principles calculations reveal two regimes of electron transfer to adsorbed ethylene carbonate molecules (EC, a main component of commercial electrolyte), depending on whether the electrode is alumina coated. On bare Li metal electrode surfaces, EC accepts electrons and decomposes within picoseconds. In contrast, constrained density functional theory calculations in an ultrahigh vacuum setting show that, with the oxide coating, e(-) tunneling to the adsorbed EC falls within the nonadiabatic regime. Here the molecular reorganization energy, computed in the harmonic approximation, plays a key role in slowing down electron transfer. Ab initio molecular dynamics simulations conducted at liquid EC electrode interfaces are consistent with the view that reactions and electron transfer occur right at the interface. Microgravimetric measurements demonstrate that the ALD coating decreases electrolyte decomposition and corroborates the theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja205119gDOI Listing

Publication Analysis

Top Keywords

electrolyte decomposition
12
electron transfer
12
atomic layer
8
layer deposition
8
lithium ion
8
electrode surfaces
8
ald coating
8
deposition hinder
4
hinder solvent
4
decomposition
4

Similar Publications

LiZrF protective layer enabled high-voltage LiCoO positive electrode in sulfide all-solid-state batteries.

Nat Commun

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.

The application of high-voltage positive electrode materials in sulfide all-solid-state lithium batteries is hindered by the limited oxidation potential of sulfide-based solid-state electrolytes (SSEs). Consequently, surface coating on positive electrode materials is widely applied to alleviate detrimental interfacial reactions. However, most coating layers also react with sulfide-based SSEs, generating electronic conductors and causing gradual interface degradation and capacity fading.

View Article and Find Full Text PDF

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives are typical catholytes in aqueous organic redox flow batteries (AORFBs), but reported lifetime of them is limited. We find that the increase of Hirshfeld charge decreases the Gibbs free energy change (ΔG) values of side reactions of TEMPO, a near-linear relationship, and then exacerbates their degradation. Here we predict and synthesize a TEMPO derivative, namely TPP-TEMPO, by analyzing the Hirshfeld charge.

View Article and Find Full Text PDF
Article Synopsis
  • Proton exchange membrane fuel cells (PEMFCs) face challenges due to the limitations of Nafion membranes, which can degrade when exposed to strong oxidizers, prompting the need for new stable proton-conductive materials.
  • A novel material, Htimb-based PMo-based POMOFs (CUST-577), was synthesized, demonstrating excellent proton conductivity and longevity, with a proton conductivity of 8.9 × 10 S cm at 80 °C and 98% relative humidity.
  • CUST-577 also showed impressive capacitance properties in a three-electrode system, with a high specific capacitance of 308 F/g and strong retention after extensive cycling, indicating its potential
View Article and Find Full Text PDF

The addition of a redox mediator as soluble catalyst into electrolyte can effectively overcome the bottlenecks of poor energy efficiency and limited cyclability for Li-O2 batteries caused by passivation of insulating discharge products and unfavorable byproducts. Herein we report a novel soluble catalyst of bifunctional imidazolyl iodide salt additive, 1,3-dimethylimidazole iodide (DMII), to successfully construct highly efficient and durable Li-O2 batteries. The anion I- can effectively promote the charge transport of Li2O2 and accelerate the redox kinetics of oxygen reduction/oxygen evolution reactions on the cathode side, thereby significantly decreasing the charge/discharge overpotential.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!