The aim of this study was to examine effects of 21-week twice weekly strength (ST), endurance (ET) and combined (ST + ET 2 + 2 times a week) (SET) training on neuromuscular, endurance and walking performances as well as balance. 108 healthy men (56.3 ± 9.9 years) were divided into three training (ST; n = 30, ET; n = 26, SET; n = 31) groups and controls (C n = 21). Dynamic 1RM and explosive leg presses (1RMleg, 50%1RMleg), peak oxygen uptake using a bicycle ergometer (VO(2peak)), 10 m loaded walking time (10WALK) and dynamic balance distance (DYND) were measured. Significant increases were observed in maximal 1RMleg of 21% in ST (p < 0.001) and 22% in SET (p < 0.001) and in explosive 50%1RMleg of 7.5% in ST (p = 0.005) and 10.2% in SET (p < 0.001). VO(2peak) increased by 12.5% in ET (p = 0.001) and 9.8% in SET (p < 0.001). Significant decreases occurred in 10WALK in ST (p < 0.001) and SET (p = 0.003) and also in DYND of -10.3% in ST (p = 0.002) and -8% in SET (p = 0.028). The changes in C remained minor in all variables. In conclusion, ST and SET training produced significant improvements in maximal and explosive strength, walking speed and balance without any interference effect in SET. Significant but moderate relationships were observed between strength and dynamic balance and walking speed, while no corresponding correlations were found in the ET group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-011-2089-7 | DOI Listing |
Pharmaceutics
January 2025
Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.
: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, University Rennes, 35000 Rennes, France.
The insertion/deletion (I/D) polymorphism in , the gene encoding the angiotensin-converting enzyme (ACE), has been suggested as a genetic variation that can influence exercise performance and risk of injury in elite athletes. The I allele has been associated with enhanced endurance performance and with reduced inflammation, while the D allele has been associated with improved performance in strength and power activities. However, the role of this genetic variant in the incidence of non-contact injury is underexplored.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Research Laboratory, Exercise Physiology and Physiopathology: From Integrated to Molecular "Biology, Medicine and Health" (LR19ES09), Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia.
Objectives: There is a lack of studies that investigate the relationship between anthropometric profiles, biological maturity, and specific physical performances in young male basketball players. This study aimed to evaluate the development of anthropometric characteristics and physical performance across different age and maturity groups among male basketball players in Palestine, as well as to identify the anthropometric factors influencing physical performance within this population.
Methods: A total of one-hundred-fifty male basketball players, aged 12 to 16, participated in this study.
Int J Environ Res Public Health
December 2024
Centre of Research, Education, Innovation and Intervention in Sport and Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
We have examined the impact of CrossFit workout sessions on physical fitness, comparing the obtained outcomes with the recommendations of the American College of Sports Medicine. In addition, we provide suggestions to improve training monitoring, as well as practical applications for researchers, coaches and practitioners. CrossFit imposes high cardiorespiratory and metabolic demands, promoting improvements in circulatory capacity, oxidative metabolism and muscular endurance.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Respiratory Medicine, Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kokurakita-Ku, Kitakyushu-Shi, Fukuoka, 802-0052, Japan.
Background: High-intensity exercise is recommended for the pulmonary rehabilitation of patients with chronic obstructive pulmonary disease (COPD); however, it can cause an energy imbalance due to increased energy expenditure. Here, we aimed to explore the effect of reducing exercise intensity on energy balance in patients with COPD experiencing high-intensity training-induced weight loss.
Methods: All participants underwent high-intensity endurance and resistance training for a 2-week preliminary period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!