G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gβγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gβγ signaling complex. Fluorescent energy resonance transfer (FRET) studies showed strong GIRK-Gβγ interactions but yielded controversial results regarding the GIRK-Gα(i/o) interaction. We investigated the mechanisms of regulation of GIRK by Gα(i/o) using wild-type Gα(i3) (Gα(i3)WT) and Gα(i3) labeled at three different positions with fluorescent proteins, CFP or YFP (xFP). Gα(i3)xFP proteins bound the cytosolic domain of GIRK1 and interacted with Gβγ in a guanine nucleotide-dependent manner. However, only an N-terminally labeled, myristoylated Gα(i3)xFP (Gα(i3)NT) closely mimicked all aspects of Gα(i3)WT regulation except for a weaker regulation of I(basal). Gα(i3) labeled with YFP within the Gα helical domain preserved regulation of I(basal) but failed to restore fast I(evoked). Titrated expression of Gα(i3)NT and Gα(i3)WT confirmed that regulation of I(basal) and of the kinetics of I(evoked) of GIRK1/2 are independent functions of Gα(i). FRET and direct biochemical measurements indicated much stronger interaction between GIRK1 and Gβγ than between GIRK1 and Gα(i3). Thus, Gα(i/o)βγ heterotrimer may be attached to GIRK primarily via Gβγ within the signaling complex. Our findings support the notion that Gα(i/o) actively regulates GIRK. Although regulation of I(basal) is a function of Gα(i)(GDP), our new findings indicate that regulation of kinetics of I(evoked) is mediated by Gα(i)(GTP).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190912 | PMC |
http://dx.doi.org/10.1074/jbc.M111.271056 | DOI Listing |
PLoS Comput Biol
November 2015
Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal.
View Article and Find Full Text PDFInt Rev Neurobiol
July 2016
Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
G protein-gated K(+) (GIRK, or Kir3) channels mediate inhibitory neurotransmission via G protein-coupled receptors (GPCRs) in heart and brain. The signaling cascade involves activation of GPCR by an agonist, activation of a G protein followed by rearrangement or dissociation of activated Gα(GTP) from Gβγ, and activation of GIRK by Gβγ. Gβγ is the main transducer of GPCR activating signal to the GIRK channel.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2014
Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030.
Lithium (Li(+)) is widely used to treat bipolar disorder (BPD). Cellular targets of Li(+), such as glycogen synthase kinase 3β (GSK3β) and G proteins, have long been implicated in BPD etiology; however, recent genetic studies link BPD to other proteins, particularly ion channels. Li(+) affects neuronal excitability, but the underlying mechanisms and the relevance to putative BPD targets are unknown.
View Article and Find Full Text PDFCell Signal
June 2014
Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany.
Opening of G-protein-activated inward-rectifying K(+) (GIRK, Kir3) channels is regulated by interaction with βγ-subunits of Pertussis-toxin-sensitive G proteins upon activation of appropriate GPCRs. In atrial and neuronal cells agonist-independent activity (I(basal)) contributes to the background K(+) conductance, important for stabilizing resting potential. Data obtained from the Kir3 signaling pathway reconstituted in Xenopus oocytes suggest that I(basal) requires free G(βγ).
View Article and Find Full Text PDFJ Biol Chem
September 2011
Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gβγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gβγ signaling complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!