Sepsis is involved in the decrease of membrane excitability of skeletal muscle, leading to polyneuromyopathy. This effect is mediated by alterations of the properties of voltage-gated sodium channels (Na(V)), but the exact mechanism is still unknown. The aim of the present study was to check whether tumor necrosis factor (TNF-α), a cytokine released during sepsis, exerts a rapid effect on Na(V). Sodium current (I(Na)) was recorded by macropatch clamp in skeletal muscle fibers isolated from rat peroneus longus muscle, in control conditions and after TNF-α addition. Analyses of dose-effect and time-effect relationships were carried out. Effect of chelerythrine, a PKC inhibitor, was also studied to determine the way of action of TNF-α. TNF-α induced a reversible dose- and time-dependent inhibition of I(Na). A maximum inhibition of 75% of the control current was observed. A shift toward more negative potentials of activation and inactivation curves of I(Na) was also noticed. These effects were prevented by chelerythrine pretreatment. TNF-α is a cytokine released in the early stages of sepsis. Besides a possible transcriptional role, i.e., modification of the channel type and/or number, we demonstrated the existence of a rapid, posttranscriptional inhibition of Na(V) by TNF-α. The downregulation of the sodium current could be mediated by a PKC-induced phosphorylation of the sodium channel, thus leading to a significant decrease in muscle excitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00097.2011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!