Mesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 μM of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the up-regulation of muscle genes at the myoblast stage, while at later stages nearly 50% of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization, as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 μM ryanodine, and 100 μM nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-186122DOI Listing

Publication Analysis

Top Keywords

mesenchymal progenitor
8
progenitor cells
8
calcium transients
8
myotubes
6
epigenetics dna
4
dna demethylation
4
demethylation promotes
4
promotes skeletal
4
skeletal myotube
4
myotube maturation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!