Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting.

Development

Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China.

Published: September 2011

Cell sorting involves the segregation of two cell populations into `immiscible' adjacent tissues with smooth borders. Echinoid (Ed), a nectin ortholog, is an adherens junction protein in Drosophila, and cells mutant for ed sort out from the surrounding wild-type cells. However, it remains unknown which factors trigger cell sorting. Here, we dissect the sequence of this process and find that cell sorting occurs when differential expression of Ed triggers the assembly of actomyosin cable. Conversely, Ed-mediated cell sorting can be rescued by recruitment of Ed, via homophilic or heterophilic interactions, to the wild-type cell side of the clonal interface, even when differential Ed expression persists. We found, unexpectedly, that when actomyosin cable was largely absent, differential adhesion was sufficient to cause limited cell segregation but with a jagged tissue border (imperfect sorting). We propose that Ed-mediated cell sorting is driven both by differential Ed adhesion that induces cell segregation with a jagged border and by actomyosin cable assembly at the interface that smoothens this border.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.062257DOI Listing

Publication Analysis

Top Keywords

cell sorting
24
actomyosin cable
16
differential adhesion
12
cell
10
differential expression
8
ed-mediated cell
8
cell segregation
8
segregation jagged
8
sorting
7
differential
5

Similar Publications

Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.

View Article and Find Full Text PDF

Background: Monocytes are evolutionarily preserved innate immune cells that play essential roles in immune response regulation. Three activated monocyte subsets-classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)-are associated with systemic lupus erythematosus (SLE) progression. This study aims to determine the association of monocyte subsets with SLE disease activity.

View Article and Find Full Text PDF

Background: Studies regarding hypercoagulation in Non-Arteritic Anterior Ischemic Optic Neuropathy (NAION) patients have produced conflicting results. With a presumption that the early coagulation phase may affect the occurrence of NAION, this study aims to investigate the early coagulation markers, E-selectin and P-selectin, to determine whether these biomolecular changes play a significant role in NAION, thus potentially leading to a better clinical approach.

Methods: A cross-sectional study involving two groups of NAION subjects, a hypercoagulation group and a non-hypercoagulation group, was conducted in the Neuro-Ophthalmology Division, Department of Ophthalmology, FKUI-RSCM Kirana from October 2020 to April 2022.

View Article and Find Full Text PDF

T-cell immune response is an important component of antiviral immunity, it is of great significance to determine their absolute counts, relative frequencies and functionalities for evaluating protective immunity in individuals and population. However, there is a lack of guidelines or a consensus on assays for antigen-specific T cells. It is necessary to evaluate the SARS-CoV-2-specific T cells in population during and after COVID-19 epidemic.

View Article and Find Full Text PDF

Modular metabolic flux control for kick-starting cascade catalysis through engineering customizable compartment.

Bioresour Technol

January 2025

School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China. Electronic address:

Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!