A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors. | LitMetric

Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors.

Pain

Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA.

Published: September 2011

Although cholinergic drugs are known to modulate nociception, the role of endogenous acetylcholine in nociceptive processing remains unclear. In the current study, we evaluated the role of cholinergic transmission through spinal β(2)-subunit-containing nicotinic acetylcholine receptors in the control of nociceptive thresholds. We show that mechanical and thermal nociceptive thresholds are significantly lowered in β(2)(∗)-knockout (KO) mice. Using nicotinic antagonists in these mice, we demonstrate that β(2)(∗)-nAChRs are responsible for tonic inhibitory control of mechanical thresholds at the spinal level. We further hypothesized that tonic β(2)(∗)-nAChR control of mechanical nociceptive thresholds might implicate GABAergic transmission since spinal nAChR stimulation can enhance inhibitory transmission. Indeed, the GABA(A) receptor antagonist bicuculline decreased the mechanical threshold in wild-type but not β(2)(∗)-KO mice, and the agonist muscimol restored basal mechanical threshold in β(2)(∗)-KO mice. Thus, β(2)(∗)-nAChRs appeared to be necessary for GABAergic control of nociceptive information. As a consequence of this defective inhibitory control, β(2)(∗)-KO mice were also hyperresponsive to capsaicin-induced C-fiber stimulation. Our results indicate that β(2)(∗)-nAChRs are implicated in the recruitment of inhibitory control of nociception, as shown by delayed recovery from capsaicin-induced allodynia, potentiated nociceptive response to inflammation and neuropathy, and by the loss of high-frequency transcutaneous electrical nerve stimulation (TENS)-induced analgesia in β(2)(∗)-KO mice. As high-frequency TENS induces analgesia through Aβ-fiber recruitment, these data suggest that β(2)(∗)-nAChRs may be critical for the gate control of nociceptive information by non-nociceptive sensory inputs. In conclusion, acetylcholine signaling through β(2)(∗)-nAChRs seems to be essential for setting nociceptive thresholds by controlling GABAergic inhibition in the spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2011.05.022DOI Listing

Publication Analysis

Top Keywords

nociceptive thresholds
20
β2∗-ko mice
16
control nociceptive
12
inhibitory control
12
nociceptive
9
spinal β2-subunit-containing
8
β2-subunit-containing nicotinic
8
nicotinic acetylcholine
8
acetylcholine receptors
8
transmission spinal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!