Mercury exposure in both humans and mice is associated with features of systemic autoimmunity. Murine HgCl₂-induced autoimmunity (mHgIA) requires MHC Class II, CD4⁺ T-cells, co-stimulatory molecules, and interferon-γ (IFN-γ), similar to spontaneous models of systemic lupus erythematosus (SLE). β₂-microglobulin (B2m) is required for functional MHC Class I molecules and the neonatal F(c) receptor (F(c)Rn). Deficiency of B2m in lupus-prone strains is consistently associated with reduced IgG levels, but with variable effects on other manifestations. Herein, we examined the role of B2m in mHgIA and show that in the absence of B2m, mercury-exposed mice failed to exhibit hypergammaglobulinemia, had reduced anti-nucleolar autoantibodies (ANoA), and had a lower incidence of immune complex deposits in splenic blood vessels, whereas IgG anti-chromatin autoantibodies and renal immune deposits were largely unaffected. Subclass analysis of the IgG anti-chromatin, however, revealed a significant reduction in the IgG₁ subtype. Examination of IFNγ, IL-4, and IL-2 in exposed skin, draining lymph nodes, and spleen following mercury exposure showed reduced IL-4 in the spleen and skin in B2m-deficient mice, consistent with the lower IgG₁ anti-chromatin levels, and reduced IFNγ expression in the skin. These findings demonstrate how a single genetic alteration can partially but significantly modify the clinical manifestations of systemic autoimmunity induced by exposure to xenobiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257888 | PMC |
http://dx.doi.org/10.3109/1547691X.2011.583614 | DOI Listing |
Cytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFBest Pract Res Clin Rheumatol
January 2025
Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:
Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.
View Article and Find Full Text PDFLupus Sci Med
January 2025
Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
Objective: Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS).
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD. Electronic address:
Autoimmun Rev
January 2025
Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil. Electronic address:
Introduction: Autoimmune diseases often present in a systemic manner, affecting various organs and tissues. Involvement of the central and peripheral nervous system is not uncommon in these conditions and is associated with high morbidity and mortality. Therefore, early recognition of the neuropsychiatric manifestations associated with rheumatologic diseases is essential for the introduction of appropriate therapies with the objective of providing a better quality of life for individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!