A series of pyrazinoporphyrazine macrocycles carrying externally appended 2-thienyl rings, represented as [Th(8)TPyzPzM], where Th(8)TPyzPz = tetrakis-2,3-[5,6-di(2-thienyl)pyrazino]porphyrazinato anion and M = Mg(II)(H(2)O), Zn(II), Co(II), Cu(II), or 2H(1), were prepared and isolated as solid air-stable hydrated species. All of the compounds, completely insoluble in water, were characterized by their UV-visible spectra and electrochemical behavior in solutions of dimethylformamide (DMF), dimethyl sulfoxide, and pyridine. Molecular aggregation occurs at concentrations of ca. 10(-4) M, but monomers are formed in more dilute solutions of 10(-5) M or less. The examined octathienyl compounds [Th(8)TPyzPzM] behave as electron-deficient macrocycles, and UV-visible spectral measurements provide useful information about how the peripheral thienyl rings influence the electronic distribution over the entire macrocyclic framework. Cyclic voltammetric and spectroelectrochemical data confirm the easier reducibility of the compounds as compared to the related phthalocyanine analogues, and the overall redox behavior and thermodynamic potentials for the four stepwise one-electron reductions of the compounds are similar to those of the earlier examined octapyridinated analogues [Py(8)TPyzPzM]. Quantum yields (Φ(Δ)) for the generation of singlet oxygen, (1)O(2), the cytotoxic agent active in photodynamic therapy (PDT), and fluorescence quantum yields (Φ(F)) were measured for the Zn(II) and Mg(II) complexes, [Th(8)TPyzPzZn] and [Th(8)TPyzPzMg(H(2)O)], and the data were compared to those of corresponding octapyridino macrocycles [Py(8)TPyzPzZn] and [Py(8)TPyzPzMg(H(2)O)] and their related octacations [(2-Mepy)(8)TPyzPzZn](8+) and [(2-Mepy)(8)TPyzPzMg(H(2)O)](8+). These measurements were carried out in DMF and in DMF preacidified with HCl (ca. 10(-4) M). All of the examined Zn(II) compounds behave as excellent photosensitizers (Φ(Δ) = 0.4-0.6) both in DMF and DMF/HCl solutions, whereas noticeable fluorescence activity (Φ(F) = 0.36-0.43) in DMF/HCl solutions is shown by the Mg(II) derivatives; these data might provide perspectives for applications in PDT (Zn(II)) and imaging response and diagnosis (Mg(II)).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic2007556DOI Listing

Publication Analysis

Top Keywords

externally appended
8
thienyl rings
8
uv-visible spectra
8
spectra electrochemical
8
electrochemical behavior
8
generation singlet
8
singlet oxygen
8
quantum yields
8
dmf/hcl solutions
8
compounds
5

Similar Publications

Background: The institutional accreditation standards were revised after the initial round of institutional accreditation and gaining experience while scrutinizing issues and complications. This research covers the steps needed to update and then compile the new standards, making the necessary changes in regulations, self-evaluation guides, external evaluation, ethics, and the required forms.

Materials And Methods: This comprehensive developmental study, conducted in two main phases from 2019 to 2022 at Isfahan University of Medical Sciences, employed a variety of rigorous methods.

View Article and Find Full Text PDF

In the present study, we have synthesized and thoroughly characterized two Ru(II) dimers with compositions [(ttpy)Ru(tpvpt')Ru(ttpy)](ClO) and [(ttpy)Ru(t'pvpvpt')Ru(ttpy)](ClO) incorporating phenylene-vinylene-substituted terpyridine bridging ligands capable of coordinating in both an NNN- and cyclometalated NNC-fashion. The complexes display strong absorption across the entire UV-vis spectral domain and exhibit luminescence in the NIR region (820-850 nm). The N atoms in the outer coordination sphere were employed for alteration of the photoredox behaviors of the complexes via acid-base equilibria.

View Article and Find Full Text PDF

Molecular Fe(II)-Ln(III) dyads for luminescence reading of spin-state equilibria at the molecular level.

Dalton Trans

November 2024

Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.

Due to the primogenic effect, the valence shells of divalent iron Fe(II) ([Ar]3d) and trivalent lanthanides Ln(III) ([Xe]4f) are compact enough to induce spin-state equilibrium for the 3d-block metal and atom-like luminescence for the 4f-block partner in Fe(II)-Ln(III) dyads. In the specific case of homoleptic pseudo-octahedral [Fe(II)N] units, programming spin crossover (SCO) around room temperature at normal pressure requires the design of unsymmetrical didentate five-membered ring chelating NN' ligands, in which a five-membered (benz)imidazole heterocycle (N) is connected to a six-membered pyrimidine heterocycle (N'). Benefiting from the influence, the facial isomer -[Fe(II)(NN')] is suitable for inducing SCO properties at room temperature in solution.

View Article and Find Full Text PDF

In this study, novel phosphorescent dipyrido[3,2-;2'3'-]phenazine (dppz)-platinum(II)-phenylacetylide complexes were developed to fabricate non-doped organic light-emitting diodes (OLED) by solution-processing. To facilitate the charge carrier injection into the emitting layer (EML), 3,6-di--butylcarbazole-functinalized phenylacetylides were employed. As for the dppz ligand, 9,9-dihexylfluoren-2-yl and 4-hexylthiophen-2-yl side-arms were introduced to the 2,7-positions, which led to reddish orange and red photoluminescence (PL), respectively, in solution and film states (PL wavelength: ca.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined a modified surgical approach for treating jugular foramen paragangliomas while preserving ear structures.
  • Two female patients underwent the new technique, resulting in complete tumor removal, although one faced post-op complications such as infection and hearing loss.
  • The findings suggest that this method is effective for certain patients with tumors in the jugular foramen, particularly those with minimal artery involvement and limited hearing loss.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!