The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn202141k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!