Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide.

ACS Nano

NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences #05-01, National University of Singapore, 28 Medical Drive, 117456, Singapore.

Published: September 2011

The culture of bone marrow derived mesenchymal stem cells (MSCs), as well as the control of its differentiation toward different tissue lineage, is a very important part of tissue engineering, where cells are combined with artificial scaffold to regenerate tissues. Graphene (G) and graphene oxide (GO) sheets are soft membranes with high in-plane stiffness and can potentially serve as a biocompatible, transferable, and implantable platform for stem cell culture. While the healthy proliferation of stem cells on various carbon platforms has been demonstrated, the chemical role of G and GO, if any, in guiding uncommitted stem cells toward differentiated cells is not known. Herein, we report that the strong noncovalent binding abilities of G allow it to act as a preconcentration platform for osteogenic inducers, which accelerate MSCs growing on it toward the osteogenic lineage. The molecular origin of accelerated differentation is investigated by studying the binding abilities of G and GO toward different growth agents. Interestingly, differentiation to adipocytes is greatly suppressed on G because insulin, which is a key regulator for the synthesis of fatty acids, is denatured upon π-π adsorption on G; in contrast, GO does not interfere with adipogenesis due to electrostatic binding with insulin. The different binding interactions and their subsequent influence on stem cell growth and differentiation are ascribed to different degrees of π-π stacking and electrostatic and hydrogen bonding mediated by G and GO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn202190cDOI Listing

Publication Analysis

Top Keywords

stem cell
12
stem cells
12
cell growth
8
growth differentiation
8
graphene graphene
8
graphene oxide
8
binding abilities
8
stem
6
cells
5
origin enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!