The first reported iodination of a corrole leads to selective functionalization of the four C-H bonds on one pole of the macrocycle. An aluminum(III) complex of the tetraiodinated corrole, which exhibits red fluorescence, possesses a long-lived triplet excited state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja202692bDOI Listing

Publication Analysis

Top Keywords

long-lived triplet
8
triplet excited
8
iodinated aluminumiii
4
aluminumiii corroles
4
corroles long-lived
4
excited states
4
states reported
4
reported iodination
4
iodination corrole
4
corrole leads
4

Similar Publications

Leveraging Intramolecular π-Stacking to Access an Exceptionally Long-Lived MC Excited State in an Fe(II) Carbene Complex.

J Am Chem Soc

January 2025

Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.

The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived MC excited state for a remarkable 4.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Triplet excited states in organic semiconductors are usually optically dark and long-lived as they have a spin-forbidden transition to the singlet ground state and therefore hinder processes in light-harvesting applications. Also, triplets often cause damage to the system as they can sensitize the formation of reactive singlet oxygen. Despite these unfavorable characteristics, there exist mechanisms through which we can utilize triplet states, and that constitutes the scope of this review.

View Article and Find Full Text PDF

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!