Tumors emerge as a result of the sequential acquisition of genetic, epigenetic and somatic alterations promoting cell proliferation and survival. The maintenance and expansion of tumor cells rely on their ability to adapt to changes in their microenvironment, together with the acquisition of the ability to remodel their surroundings. Tumor cells interact with two types of interconnected microenvironments: the metabolic cell autonomous microenvironment and the nonautonomous cellular-molecular microenvironment comprising interactions between tumor cells and the surrounding stroma. Hypoxia is a central player in cancer progression, affecting not only tumor cell autonomous functions, such as cell division and invasion, resistance to therapy and genetic instability, but also nonautonomous processes, such as angiogenesis, lymphangiogenesis and inflammation, all contributing to metastasis. Closely related microenvironmental stressors affecting cancer progression include, in addition to hypoxia, elevated interstitial pressure and oxidative stress. Noninvasive imaging offers multiple means to monitor the tumor microenvironment and its consequences, and can thus assist in the understanding of the biological basis of hypoxia and microenvironmental stress in cancer progression, and in the development of strategies to monitor therapies targeted at stress-induced tumor progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558740 | PMC |
http://dx.doi.org/10.1002/nbm.1632 | DOI Listing |
Immun Ageing
December 2024
Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
The increased incidence of inflammatory diseases, infectious diseases, autoimmune disorders, and tumors in elderly individuals is closely associated with several well-established features of immunosenescence, including reduced B cell genesis and dampened immune responses. Recent studies have highlighted the critical role of dual receptor lymphocytes in tumors and autoimmune diseases. This study utilized shared data generated through scRNA-seq + scBCR-seq technology to investigate the presence of dual receptor-expressing B cells in the peritoneum of mouse and peripheral blood of healthy volunteers, and whether there are age-related differences in dual receptor B cell populations.
View Article and Find Full Text PDFMol Cancer
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.
View Article and Find Full Text PDFBMC Complement Med Ther
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.
View Article and Find Full Text PDFTrends Cancer
December 2024
Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth.
View Article and Find Full Text PDFTrends Cancer
December 2024
Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:
Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!