Galectin-3 is a new MerTK-specific eat-me signal.

J Cell Physiol

Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida 33136, USA.

Published: February 2012

Phagocytosis of apoptotic cells and cellular debris is a critical process of maintaining tissue and immune homeostasis. Defects in the phagocytosis process cause autoimmunity and degenerative diseases. Phagocytosis ligands or "eat-me" signals control the initiation of the process by linking apoptotic cells to receptors on phagocyte surface and triggering signaling cascades for cargo engulfment. Eat-me signals are traditionally identified on a case-by-case basis with challenges, and the identification of their cognate receptors is equally daunting. Here, we identified galectin-3 (Gal-3) as a new MerTK ligand by an advanced dual functional cloning strategy, in which phagocytosis-based functional cloning is combined with receptor-based affinity cloning to directly identify receptor-specific eat-me signal. Gal-3 interaction with MerTK was independently verified by co-immunoprecipitation. Functional analyses showed that Gal-3 stimulated the phagocytosis of apoptotic cells and cellular debris by macrophages and retinal pigment epithelial cells with MerTK activation and autophosphorylation. The Gal-3-mediated phagocytosis was blocked by excessive soluble MerTK extracellular domain and lactose. These results suggest that Gal-3 is a legitimate MerTK-specific eat-me signal. The strategy of dual functional cloning with applicability to other phagocytic receptors will facilitate unbiased identification of their unknown ligands and improve our capacity for therapeutic modulation of phagocytic activity and innate immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225605PMC
http://dx.doi.org/10.1002/jcp.22955DOI Listing

Publication Analysis

Top Keywords

eat-me signal
12
apoptotic cells
12
functional cloning
12
mertk-specific eat-me
8
phagocytosis apoptotic
8
cells cellular
8
cellular debris
8
dual functional
8
phagocytosis
5
galectin-3 mertk-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!