In a previous study, we have described oxidative stress during Epstein-Barr virus lytic cycle induction. Oxidative stress was evidenced by the observed high MDA levels and the decreased activities of antioxidant enzymes. We hypothesised that the lower activities of the antioxidant enzymes decrease were the result of either the excessive production of reactive oxygen radical species (ROS) or a negative regulation of the antioxidant enzyme gene expressions. In an attempt to clarify this situation, EBV lytic cycle was induced in Raji cell line by a non-stressing dose of 12-0-tetradecanoylphorbol-13-acetate. BZLF-1, superoxide dismutase, and catalase gene expressions were then analysed using semi-quantitative RT-PCR, simultaneously at a kinetic of 6, 12, 24, 36, and 48 h. ROS production was evaluated by chemiluminescence. A study was conducted to establish whether ROS production, BZLF-1, and the expression of antioxidant genes were inter-correlated. Induction of the lytic cycle resulted in increased expressions of the genes of superoxide dismutase and catalase, which began at 24 h (p < 0.05) and reached a peak at 48 h (p < 0.05). Significant increases of the ROS levels were observed in TPA-treated Raji cell line at 12 h, as compared with untreated cells, reaching a peak at 48 h after EBV lytic cycle induction. ROS production correlates positively with BZLF-1, SOD, and CAT gene expressions (p < 0.05; r = 0.913, r = 0.978, and r = 0.955, respectively). A positive correlation was also observed between BZLF-1 and antioxidant gene expressions (p < 0.05; r = 0.961 and r = 0.987, respectively). In conclusion, the observed increases of the SOD and CAT gene expressions eliminate the hypothesis of a repression of the respective genes during the induction of the lytic cycle. On the other hand, the observed direct correlation between the BZLF-1 gene expression and the ROS production is indicative of a role of this gene in oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-011-9135-5DOI Listing

Publication Analysis

Top Keywords

lytic cycle
16
reactive oxygen
8
antioxidant enzyme
8
epstein-barr virus
8
virus lytic
8
cycle induction
8
raji cell
8
oxidative stress
8
activities antioxidant
8
antioxidant enzymes
8

Similar Publications

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus.

J Med Virol

January 2025

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection.

Viruses

November 2024

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.

View Article and Find Full Text PDF

Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor.

Viruses

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!