Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labelling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins after bacteria infection, which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation. 

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260710PMC
http://dx.doi.org/10.4161/psb.6.8.15810DOI Listing

Publication Analysis

Top Keywords

plant-associated bacterium
8
bacterium xanthomonas
8
xanthomonas albilineans
8
visual symptoms
8
symptoms leaf
8
leaf scald
8
sugarcane glycoproteins
4
glycoproteins signals
4
signals production
4
production xanthan
4

Similar Publications

Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum.

View Article and Find Full Text PDF

Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.

View Article and Find Full Text PDF

Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria.

Sci Total Environ

January 2025

UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.

Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl.

View Article and Find Full Text PDF

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!